Efficient goal-oriented global error estimators for BDF methods using discrete adjoints

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Goal-Oriented Local A Posteriori Error Estimators for H(div) Least-Squares Finite Element Methods

We propose a goal-oriented, local a posteriori error estimator for H(div) least-squares (LS) finite element methods. Our main interest is to develop an a posteriori error estimator for the flux approximation in a preassigned region of interest D ⊂ Ω. The estimator is obtained from the LS functional by scaling residuals with proper weight coefficients. The weight coefficients are given in terms ...

متن کامل

Element-oriented and edge-oriented local error estimators for nonconforming finite element methods

© AFCET, 1996, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...

متن کامل

Solving Differential Riccati Equations Using BDF Methods

This technical report describes three approaches for solving the Differential Riccati Equation (DRE), by means of the Backward Differentiation Formula (BDF) and resolution of the corresponding implicit equation, using Newton's method. These approaches are based on: GMRES method, resolution of Sylvester equation and fixed point method. The role and use of DRE is especially important in optimal c...

متن کامل

Goal-oriented mesh adaptation using a dissipation-based error indicator

The accuracy of functionals of solutions of the Euler equations, solved using a finite volume code, are examined under grid refinement. It is shown that a commonly used adaptation indicator based on local solution gradients is ineffective in reducing functional error for flows with supersonic regions. A novel indicator is introduced which attempts to quantify that part of the error in the funct...

متن کامل

Exact performance of error estimators for discrete classifiers

Discrete Classification problems abound in pattern recognition and data mining applications. One of the most common discrete rules is the discrete histogram rule. This paper presents exact formulas for the computation of bias, variance, and RMS of the resubstitution and leave-one-out error estimators, for the discrete histogram rule. We also describe an algorithm to compute the exact probabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2017

ISSN: 0377-0427

DOI: 10.1016/j.cam.2016.09.032